White-light diffraction tomography of unlabelled live cells
نویسندگان
چکیده
منابع مشابه
White-light diffraction tomography of unlabelled live cells
We present a technique called white-light diffraction tomography (WDT) for imaging microscopic transparent objects such as live unlabelled cells. The approach extends diffraction tomography to white-light illumination and imaging rather than scattering plane measurements. Our experiments were performed using a conventional phase contrast microscope upgraded with a module to measure quantitative...
متن کاملWhite Light Diffraction Phase Microscopy
Quantitative phase imaging (QPI) techniques are very advantageous compared to the qualitative phase imaging techniques like bright field microscopy, phase contrast microscopy, differential interference contrast microscopy due to measurement of phase information quantitatively. In QPI techniques, there is no need of exogenous contrast agents to stain or tag the specimen. White light diffraction ...
متن کاملDiffraction phase microscopy with white light.
We present white light diffraction phase microscopy (wDPM) as a quantitative phase imaging method that combines the single shot measurement benefit associated with off-axis methods, high temporal phase stability associated with common path geometries, and high spatial phase sensitivity due to the white light illumination. We propose a spatiotemporal filtering method that pushes the limit of the...
متن کاملConfocal diffraction phase microscopy of live cells.
We present a new quantitative phase microscopy technique, confocal diffraction phase microscopy, which provides quantitative phase measurements from localized sites on a sample with high sensitivity. The technique combines common-path interferometry with confocal microscopy in a transmission geometry. The capability of the technique for static imaging is demonstrated by imaging polystyrene micr...
متن کاملOptical diffraction tomography for high resolution live cell imaging.
We report the experimental implementation of optical diffraction tomography for quantitative 3D mapping of refractive index in live biological cells. Using a heterodyne Mach-Zehnder interferometer, we record complex field images of light transmitted through a sample with varying directions of illumination. To quantitatively reconstruct the 3D map of complex refractive index in live cells, we ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Photonics
سال: 2014
ISSN: 1749-4885,1749-4893
DOI: 10.1038/nphoton.2013.350